Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Res Bull ; 209: 110917, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428507

RESUMO

PURPOSE: Fentanyl, a fully synthetic opioid, is widely used for severe pain management and has a huge abuse potential for its psychostimulant effects. Unlike other opioids, the neurotoxic effects of chronic fentanyl administration are still unclear. In particular, little is known about its effect on the cerebral cortex. The current study aims to test the chronic toxicity of fentanyl in the mice model. METHODS: Adult male Balb/c mice were chronically treated with low (0.05 mg/kg, i.p) and high (0.1 mg/kg, i.p) doses of fentanyl for 5 consecutive weeks, and various neurotoxic parameters, including apoptosis, oxidative stress, and neuroinflammatory response were assessed in the cortex. Potential histological as well as neurochemical changes were also evaluated. RESULTS: The results of this study show that chronic fentanyl administration induced intense levels of apoptosis, oxidative stress, and neuroinflammation in the cerebral cortex. These findings were found to be correlated with histopathological characteristics of neural degeneration and white matter injury. Moreover, fentanyl administration was found to reduce the expression of both NMDA receptor subunits and dopamine receptors and elevate the level of epidermal growth factor (EGF). CONCLUSION: Fentanyl administration induced neurotoxic effects in the mouse cerebral cortex that could be primarily mediated by the evoked oxidative-inflammatory response. The altered expression of NMDA receptors, dopamine receptors, and EGF suggests the pernicious effects of fentanyl addiction that may end in the development of toxic psychosis.


Assuntos
Fator de Crescimento Epidérmico , Fentanila , Camundongos , Masculino , Animais , Fentanila/farmacologia , Fator de Crescimento Epidérmico/uso terapêutico , Analgésicos Opioides/farmacologia , Analgésicos Opioides/uso terapêutico , Dor/tratamento farmacológico , Córtex Cerebral
2.
Biochem Genet ; 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441812

RESUMO

Mesenchymal stem cells (MSCs) are the most widely used stem cells in regenerative medicine. They can be isolated from multiple sources, most commonly bone marrow and adipose tissue. MSCs derived from different sources show similar molecular and biological characteristics, but there is ongoing debate regarding the best source of MSCs and the potential biological differences between MSCs from different origins. Bone marrow derived-MSCs (BM-MSCs) and adipose tissue-derived MSCs (AD-MSCs) share many molecular and immunomodulatory properties. In this study, we compared the levels of major immunomodulatory, adhesive, and migratory factors in human BM-MSCs and AD-MSCs under normal conditions, which will help determine the suitability and specificity of each type for certain therapeutic applications. WST1 assay and fluorescent assay SUC-LLVY-AMC were used to measure MSC proliferation and 26S proteasome activity, respectively. Western blotting, ELISA Assays, and bright field live imaging were also used. AD-MSCs and BM-MSCs exhibited similar morphology and proliferation rate. A significantly higher 26S proteasome activity was detected in AD-MSCs than in BM-MSCs. Levels of ICAM-1, integrin α5 and integrin α6 were significantly higher in AD-MSCs compared to BM-MSCs, while no significant difference in CXCR4 levels was observed. Expression of IDO and factor H was significantly higher in AD-MSCs, while CTLA-4 and IL-10 levels were higher in BM-MSCs. This indicates that AD-MSCs and BM-MSCs have different immunomodulatory and adhesion profiles. MSCs isolated from different sources may show differences in their biological and immunomodulatory properties, suggesting a potential suitability of certain MSCs type for specific conditions. Also, combination of different MSCs types could help optimize therapeutic outcomes.

3.
Eur J Med Res ; 29(1): 49, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216984

RESUMO

Synthetic cannabinoids (SCs) are chemically classified as psychoactive substances that target the endocannabinoid system in many body organs. SCs can initiate pathophysiological changes in many tissues which can be severe enough to damage the normal functionality of our body systems. The majority of SCs-related side effects are mediated by activating Cannabinoid Receptor 1 (CB1R) and Cannabinoid Receptor 2 (CB2R). The activation of these receptors can enkindle many downstream signalling pathways, including oxidative stress, inflammation, and apoptosis that ultimately can produce deleterious changes in many organs. Besides activating the cannabinoid receptors, SCs can act on non-cannabinoid targets, such as the orphan G protein receptors GPR55 and GPR18, the Peroxisome Proliferator-activated Receptors (PPARs), and the Transient receptor potential vanilloid 1 (TRPV1), which are broadly expressed in the brain and the heart and their activation mediates many pharmacological effects of SCs. In this review, we shed light on the multisystem complications found in SCs abusers, particularly discussing their neurologic, cardiovascular, renal, and hepatic effects, as well as highlighting the mechanisms that intermediate SCs-related pharmacological and toxicological consequences to provide comprehensive understanding of their short and long-term systemic effects.


Assuntos
Canabinoides , Humanos , Canabinoides/toxicidade , Canabinoides/metabolismo , Endocanabinoides/metabolismo , Receptores de Canabinoides/metabolismo , Transdução de Sinais
4.
IUBMB Life ; 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38014654

RESUMO

Mesenchymal stem cells (MSCs) are a therapeutically efficient type of stem cells validated by their ability to treat many inflammatory and chronic conditions. The biological and therapeutic characteristics of MSCs can be modified depending on the type of microenvironment at the site of transplantation. Diabetes mellitus (DM) is a commonly diagnosed metabolic disease characterized by hyperglycemia, which alters over time the cellular and molecular functions of many cells and causes their damage. Hyperglycemia can also impact the success rate of MSCs transplantation; therefore, it is extremely significant to investigate the effect of high glucose on the biological and therapeutic attributes of MSCs, particularly their immunomodulatory abilities. Thus, in this study, we explored the effect of high glucose on the immunosuppressive characteristics of human adipose tissue-derived mesenchymal stem cells (hAD-MSCs). We found that hAD-MSCs cultured in high glucose lost their immunomodulatory abilities and became detectable by immune cells. The decline in the immunosuppressive capabilities of hAD-MSCs was mediated by significant decrease in the levels of IDO, IL-10, and complement factor H and substantial increase in the activity of immunoproteasome. The protein levels of AMP-activated protein kinase (AMPK) and phosphofructokinase-1 (PFK-1), which are integral regulators of glycolysis, revealed a marked decline in high glucose exposed MSCs. The findings of our study indicated the possibility of immunomodulatory shift in MSCs after being cultured in high glucose, which can be translationally employed to explain their poor survival and short-lived therapeutic outcomes in diabetic patients.

5.
World J Stem Cells ; 15(12): 1093-1103, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38179215

RESUMO

BACKGROUND: Mesenchymal stem cells (MSCs) are a type of stem cells that possess relevant regenerative abilities and can be used to treat many chronic diseases. Diabetes mellitus (DM) is a frequently diagnosed chronic disease characterized by hyperglycemia which initiates many multisystem complications in the long-run. DM patients can benefit from MSCs transplantation to curb down the pathological consequences associated with hyperglycemia persistence and restore the function of damaged tissues. MSCs therapeutic outcomes are found to last for short period of time and ultimately these regenerative cells are eradicated and died in DM disease model. AIM: To investigate the impact of high glucose or hyperglycemia on the cellular and molecular characteristics of MSCs. METHODS: Human adipose tissue-derived MSCs (hAD-MSCs) were seeded in low (5.6 mmol/L of glucose) and high glucose (25 mmol/L of glucose) for 7 d. Cytotoxicity, viability, mitochondrial dynamics, and apoptosis were deplored using specific kits. Western blotting was performed to measure the protein expression of phosphatidylinositol 3-kinase (PI3K), TSC1, and mammalian target of rapamycin (mTOR) in these cells. RESULTS: hAD-MSCs cultured in high glucose for 7 d demonstrated marked decrease in their viability, as shown by a significant increase in lactate dehydrogenase (P < 0.01) and a significant decrease in Trypan blue (P < 0.05) in these cells compared to low glucose control. Mitochondrial membrane potential, indicated by tetramethylrhodamine ethyl ester (TMRE) fluorescence intensity, and nicotinamide adenine dinucleotide (NAD+)/NADH ratio were significantly dropped (P < 0.05 for TMRE and P < 0.01 for NAD+/NADH) in high glucose exposed hAD-MSCs, indicating disturbed mitochondrial function. PI3K protein expression significantly decreased in high glucose culture MSCs (P < 0.05 compared to low glucose) and it was coupled with significant upregulation in TSC1 (P < 0.05) and downregulation in mTOR protein expression (P < 0.05). Mitochondrial complexes I, IV, and V were downregulated profoundly in high glucose (P < 0.05 compared to low glucose). Apoptosis was induced as a result of mitochondrial impairment and explained the poor survival of MSCs in high glucose. CONCLUSION: High glucose impaired the mitochondrial dynamics and regulatory proteins in hAD-MSCs ensuing their poor survival and high apoptosis rate in hyperglycemic microenvironment.

6.
Toxics ; 10(11)2022 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-36355959

RESUMO

The widespread recreational use of synthetic cannabinoids (SCs) has become a serious health issue. Reports of life-threatening intoxications related to SC consumption have markedly increased in recent years, including neurotoxicity, cardiotoxicity, nephrotoxicity, and hepatotoxicity. We investigated the impact of acute administration of the synthetic cannabinoid XLR-11 (3 mg/kg, i.p. for 5 consecutive days) on the liver in BALB/c mouse animal model. Using real-time quantitative RT-PCR, MDA assay, and TUNEL assay, we found consistent up-regulation of a variety of genes involved in oxidative stress (NOX2, NOX4, and iNOS), inflammation (TNF-α, IL-1ß, IL-6), and apoptosis (Bax) in the liver of XLR-11 treated mice compared to control mice. These finding were supported with an elevation of MDA levels and TUNEL positive cells in the liver of XLR-11 treated mice which further confirm increased oxidative stress and apoptosis, respectively. Histopathological analysis of the liver of XLR-11 treated mice confirmed pronounced hepatic necrosis associated with inflammatory cell infiltration. Furthermore, elevated ALT and AST serum levels were also identified in XLR-11 treated mice indicating possible liver damage. Overall, SC-induced hepatotoxicity seems to be mainly mediated by activated oxidative stress and inflammatory processes in the liver, but the specific mechanisms involved require further investigations. However, the present study shed light on the potential deleterious role of acute administration of SCs in the progression to acute hepatic injury which enhances our understanding of the adverse effect of SC consumption.

7.
PLoS One ; 17(7): e0269082, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35895623

RESUMO

The Corpus Callosum (CC) is an important structure that includes the majority of fibers connecting the two brain hemispheres. Several neurodegenerative diseases may alter CC size and morphology leading to its atrophy and malfunction which may play a role in the pathological manifestations found in these diseases. The purpose of the current study is to determine any possible changes in CC size in patients suffering from Alzheimer's disease. The Study also investigated the effect of acetylcholinesterase inhibitors (AChEIs) on the size of CC and its association with improvement in the Alzheimer disease severity scores. Midsagittal size of CC were recorded prospectively from 439 routine T1-weighted MRI brain images in normal individuals. The internal skull surface was measured to calculate CC/ internal skull surface ratio. Two groups of patients were studied: 300 (150 male / 150 female) were healthy subjects and 130 (55 males / 75 females) had Alzheimer disease. Out of the 130 Alzheimer disease pateints, 70 patients were treated with Donepezil or Rivastigmine or both. The size of the CC was measured based on T1-weighted MRI images after the treatment to investigate any possible improvement in CC size. The mean surface area of CC in controls was 6.53±1.105 cm2. There was no significant difference between males and females (P < 0.627), and CC/ internal skull surface ratio was 4.41±0.77%. Patients with mild or severe Alzheimer disease showed a significant reduction in CC size compared to healthy controls. Treating mild Alzheimer patients with either Donepezil or Rivastigmine exerts a comparable therapeutic effect in improving the CC size. There was more improvement in the size of CC in patients with severe Alzheimer disease by using combined therapy of Donepezil and Rivastigmine than using single a medication. we measured the mean size of the various portions of the corpus callosum in normal individuals and Alzheimer patients before and after taking Donepezil and Rivastigmine. Alzheimer patients have pronounced reduction in CC which is corrected after taking Donepezil and Rivastigmine leading to remarkable improvement in Alzheimer disease severity scores.


Assuntos
Doença de Alzheimer , Inibidores da Colinesterase , Acetilcolinesterase , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Corpo Caloso/diagnóstico por imagem , Corpo Caloso/patologia , Donepezila/uso terapêutico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Rivastigmina/uso terapêutico
8.
J Anat ; 241(1): 33-41, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35224745

RESUMO

Several strategies have been recently introduced to improve the practicality of multiple immunolabeling and RNA in situ hybridization protocols. Tyramide signal amplification (TSA) is a powerful method used to improve the detection sensitivity of immunohistochemistry. RNAScope is a novel commercially available in situ hybridization assay for the detection of RNA expression. In this work, we describe the use of TSA and RNAScope in situ hybridization as extremely sensitive and specific methods for the evaluation of protein and RNA expression in formaldehyde-fixed paraffin-embedded human fetal brain sections. These two techniques, when properly optimized, were highly compatible with routine formaldehyde-fixed paraffin-embedded tissue that preserves the best morphological characteristics of delicate fetal brain samples, enabling an unparalleled ability to simultaneously visualize the expression of multiple protein and mRNA of genes that are sparsely expressed in the human fetal telencephalon.


Assuntos
Formaldeído , RNA , Encéfalo/metabolismo , Humanos , Hibridização In Situ , Inclusão em Parafina/métodos , RNA/genética
9.
J Reprod Infertil ; 22(3): 165-172, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34900637

RESUMO

BACKGROUND: Alterations in sperm mitochondrial DNA (mtDNA) affect the functions of some OXPHOS proteins which will affect sperm motility and may be associated with asthenozoospermia. The purpose of this study was to investigate the correlation between 7599-bp and 7345-bp sperm mtDNA deletions and asthenozoospermia in Jordan. METHODS: Semen specimens from 200 men including 121 infertile and 79 healthy individuals were collected at the Royal Jordanian Medical Services In-vitro fertilization (IVF) units. The mtDNA was extracted followed by mtDNA amplification. Polymerase chain reaction (PCR) was conducted for the target sequences, then DNA sequencing was performed for the PCR products. Chi-square, Fisher's and Spearman's tests were used to calculate the correlation. RESULTS: The results showed a significant correlation between the presence of 7599-bp mtDNA deletion and infertility where the frequency of the 7599-bp deletion was 63.6% in the infertile group compared to the fertile 34.2% (p<0.001, (OR=3.37, 95% CI=1.860 to 6.108)). Additionally, the sperm motility showed a significant association with the frequency of the 7599-bp deletion (p=0.001, r=-0.887). The 7345-bp mtDNA deletion showed no assoctiation with the infertility (p=0.65, (OR=0.837, 95% CI= 0.464-1.51)) or asthenozoospermia (p=0.98, r=0.008). CONCLUSION: We demonstrated a significant correlation between asthenozoospermia and the 7599-bp mtDNA deletion but not the 7345-bp mtDNA deletion in the infertile men in Jordan. Screening for deletions in sperm mtDNA can be used as a pre-diagnostic molecular marker for male infertility.

10.
Front Neuroanat ; 14: 61, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32982702

RESUMO

Secretagogin (SCGN) which acts as a calcium signaling sensor, has previously been shown to be expressed by a substantial population of cortical GABAergic neurons at mid-gestation in humans but not in mice. The present study traced SCGN expression in cortical GABAergic neurons in human fetal forebrain from earlier stages than previously studied. Multiple potential origins of SCGN-expressing neurons were identified in the caudal ganglionic eminence (CGE) lateral ganglionic eminence (LGE) septum and preoptic area; these cells largely co-expressed SP8 but not the medial ganglionic eminence marker LHX6. They followed various migration routes to reach their target regions in the neocortex, insular and olfactory cortex (OC) and olfactory bulbs. A robust increase in the number of SCGN-expressing GABAergic cortical neurons was observed in the midgestational period; 58% of DLX2+ neurons expressed SCGN in the cortical wall at 19 post-conceptional weeks (PCW), a higher proportion than expressed calretinin, a marker for GABAergic neurons of LGE/CGE origin. Furthermore, although most SCGN+ neurons co-expressed calretinin in the cortical plate (CP) and deeper layers, in the marginal zone (MZ) SCGN+ and calretinin+ cells formed separate populations. In the adult mouse, it has previously been shown that in the rostral migratory stream (RMS), SCGN, annexin V (ANXA5), and matrix metalloprotease 2 (MMP2) are co-expressed forming a functioning complex that exocytoses MMP2 in response to calcium. In the present study, ANXA5 showed widespread expression throughout the cortical wall, although MMP2 expression was very largely limited to the CP. We found co-expression of these proteins in some SCGN+ neurons in the subventricular zones (SVZ) suggesting a limited role for these cells in remodeling the extracellular matrix, perhaps during cell migration.

11.
Front Mol Neurosci ; 13: 72, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32670017

RESUMO

Increasing evidence from animal and human studies indicate that exposure to nicotine during development, separated from the effects of smoking tobacco, can contribute to dysregulation of brain development including behavioral deficits. An RNAseq study of human fetal cerebral cortex demonstrated that 9 out of 16 genes for human nicotinic acetylcholine (ACh) receptor subunits are selectively expressed between 7.5 and 12 post-conceptional weeks (PCW). The most highly expressed subunit genes were CHNRA4 and CHNRB2, whose protein products combine to form the most ubiquitous functional receptor isoform expressed in the adult brain. They exhibited correlated expression in both RNAseq samples, and in tissue sections by in situ hybridization. Co-localization studies with other cortical markers suggest they are pre-dominantly expressed by post-mitotic glutamatergic neuron pre-cursors in both cortical plate and pre-subplate, rather than cortical progenitor cells or GABAergic interneuron pre-cursors. However, GABAergic interneuron progenitor cells in the ganglionic eminences do express these sub-units. CHNRA5 also showed moderate levels of expression and again favored post-mitotic neurons. Other subunits, e.g., CHRNA7, exhibited low but detectable levels of expression. CHRN genes found not to be expressed included genes for subunits usually considered muscle specific, e.g., CHNRA1, although some muscle specific gene expression was detected, for instance CHNRB1. Although there is little or no synthesis of acetylcholine by intrinsic cortical neurons, cholinergic fibers from basal forebrain innervate the cerebral cortex from 12 PCW at the latest. Acetylcholine may have a paracrine effect on radially migrating cortical neurons and GABAergic interneuron progenitors.

12.
J Anat ; 235(3): 432-451, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31373394

RESUMO

The cerebral cortex constitutes more than half the volume of the human brain and is presumed to be responsible for the neuronal computations underlying complex phenomena, such as perception, thought, language, attention, episodic memory and voluntary movement. Rodent models are extremely valuable for the investigation of brain development, but cannot provide insight into aspects that are unique or highly derived in humans. Many human psychiatric and neurological conditions have developmental origins but cannot be studied adequately in animal models. The human cerebral cortex has some unique genetic, molecular, cellular and anatomical features, which need to be further explored. The Anatomical Society devoted its summer meeting to the topic of Human Brain Development in June 2018 to tackle these important issues. The meeting was organized by Gavin Clowry (Newcastle University) and Zoltán Molnár (University of Oxford), and held at St John's College, Oxford. The participants provided a broad overview of the structure of the human brain in the context of scaling relationships across the brains of mammals, conserved principles and recent changes in the human lineage. Speakers considered how neuronal progenitors diversified in human to generate an increasing variety of cortical neurons. The formation of the earliest cortical circuits of the earliest generated neurons in the subplate was discussed together with their involvement in neurodevelopmental pathologies. Gene expression networks and susceptibility genes associated to neurodevelopmental diseases were discussed and compared with the networks that can be identified in organoids developed from induced pluripotent stem cells that recapitulate some aspects of in vivo development. New views were discussed on the specification of glutamatergic pyramidal and γ-aminobutyric acid (GABA)ergic interneurons. With the advancement of various in vivo imaging methods, the histopathological observations can be now linked to in vivo normal conditions and to various diseases. Our review gives a general evaluation of the exciting new developments in these areas. The human cortex has a much enlarged association cortex with greater interconnectivity of cortical areas with each other and with an expanded thalamus. The human cortex has relative enlargement of the upper layers, enhanced diversity and function of inhibitory interneurons and a highly expanded transient subplate layer during development. Here we highlight recent studies that address how these differences emerge during development focusing on diverse facets of our evolution.


Assuntos
Córtex Cerebral/embriologia , Animais , Redes Reguladoras de Genes , Humanos , Interneurônios , Transtornos do Neurodesenvolvimento/genética , Neurogênese , Células Piramidais
14.
J Anat ; 235(3): 555-568, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30861584

RESUMO

In rodent ventral telencephalon, diffusible morphogens induce expression of the proneural transcription factor ASCL1, which in turn induces expression of the transcription factor DLX2 that controls differentiation of cortical interneuron precursors and their tangential migration to the cerebral cortex. RNAseq analysis of human fetal samples of dorsal telencephalon revealed consistently high cortical expression of ASCL1 and increasing expression of DLX2 between 7.5 and 17 post-conceptional weeks (PCW). We explored whether cortical expression of these genes represented a population of intracortically derived interneuron precursors. Immunohistochemistry revealed an ASCL1+ /DLX2+ population of progenitor cells in the human ganglionic eminences between 6.5 and 12 PCW, but in the cortex there also existed a population of ASCL1+ /DLX2- progenitors in the subventricular zone (SVZ) that largely co-expressed cortical markers PAX6 or TBR2, although a few ASCL1+ /PAX6- progenitors were observed in the ventricular zone (VZ) and ASCL1+ cells expressing the interneuron marker GAD67 were present in the SVZ. Although rare in the VZ, DLX2+ cells progressively increased in number between 8 and 12 PCW across the cortical wall and the majority co-expressed LHX6 and originated either in the MGE, migrating to the lateral cortex, or from the septum, populating the medial wall. A minority co-expressed COUP-TFII, which identifies cells from the caudal ganglionic eminence (CGE). By 19 PCW, a significant increase in expression of DLX2 and ASCL1 was observed in the cortical VZ with a small proportion expressing both proteins. The DLX2+ cells did not co-express a cell division marker, so were not progenitors. The majority of DLX2+ cells throughout the cortical plate expressed COUP-TFII rather than LHX6+ . As the VZ declined as a proliferative zone it appeared to be re-defined as a migration pathway for COUP-TFII+ /DLX2+ interneurons from CGE to cortex. Therefore, in developing human cortex, ASCL1 expression predominantly marks a population of intermediate progenitors giving rise to glutamatergic neurons. DLX2 expression predominantly defines post-mitotic interneuron precursors.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Córtex Cerebral/embriologia , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/metabolismo , Córtex Cerebral/metabolismo , Humanos
16.
Cereb Cortex ; 29(4): 1706-1718, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30668846

RESUMO

The current model, based on rodent data, proposes that thalamocortical afferents (TCA) innervate the subplate towards the end of cortical neurogenesis. This implies that the laminar identity of cortical neurons is specified by intrinsic instructions rather than information of thalamic origin. In order to determine whether this mechanism is conserved in the primates, we examined the growth of thalamocortical (TCA) and corticofugal afferents in early human and monkey fetal development. In the human, TCA, identified by secretagogin, calbindin, and ROBO1 immunoreactivity, were observed in the internal capsule of the ventral telencephalon as early as 7-7.5 PCW, crossing the pallial/subpallial boundary (PSB) by 8 PCW before the calretinin immunoreactive corticofugal fibers do. Furthermore, TCA were observed to be passing through the intermediate zone and innervating the presubplate of the dorsolateral cortex, and already by 10-12 PCW TCAs were occupying much of the cortex. Observations at equivalent stages in the marmoset confirmed that this pattern is conserved across primates. Therefore, our results demonstrate that in primates, TCAs innervate the cortical presubplate at earlier stages than previously demonstrated by acetylcholinesterase histochemistry, suggesting that pioneer thalamic afferents may contribute to early cortical circuitry that can participate in defining cortical neuron phenotypes.


Assuntos
Córtex Cerebral/embriologia , Neurônios Aferentes/citologia , Tálamo/embriologia , Vias Aferentes/citologia , Vias Aferentes/embriologia , Vias Aferentes/metabolismo , Animais , Callithrix , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Humanos , Neurônios Aferentes/metabolismo , Roedores , Tálamo/citologia , Tálamo/metabolismo
17.
Semin Cell Dev Biol ; 76: 3-14, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28834762

RESUMO

The cerebral cortex is divided stereotypically into a number of functionally distinct areas. According to the protomap hypothesis formulated by Rakic neural progenitors in the ventricular zone form a mosaic of proliferative units that provide a primordial species-specific cortical map. Positional information of newborn neurons is maintained during their migration to the overlying cortical plate. Much evidence has been found to support this hypothesis from studies of primary cortical areas in mouse models in particular. Differential expansion of cortical areas and the introduction of new functional modules during evolution might be the result of changes in the progenitor cells. The human cerebral cortex shows a wide divergence from the mouse containing a much higher proportion of association cortex and a more complicated regionalised repertoire of neuron sub-types. To what extent does the protomap hypothesis hold true for the primate brain? This review summarises a growing number of studies exploring arealised gene expression in the early developing human telencephalon. The evidence so far is that the human and mouse brain do share fundamental mechanisms of areal specification, however there are subtle differences which could lead us to a better understanding of cortical evolution and the origins of neurodevelopmental diseases.


Assuntos
Córtex Cerebral/crescimento & desenvolvimento , Neurogênese/genética , Telencéfalo/crescimento & desenvolvimento , Diferenciação Celular , Humanos
18.
Cereb Cortex ; 27(10): 4971-4987, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28922831

RESUMO

In human telencephalon at 8-12 postconceptional weeks, ribonucleic acid quantitative sequencing and immunohistochemistry revealed cortical chicken ovalbumin upstream promotor-transcription factor 1 (COUP-TFI) expression in a high ventro-posterior to low anterior gradient except for raised immunoreactivity in the anterior ventral pallium. Unlike in mouse, COUP-TFI and SP8 were extensively co-expressed in dorsal sensory neocortex and dorsal hippocampus whereas COUPTFI/COUPTFII co-expression defined ventral temporal cortex and ventral hippocampus. In the ganglionic eminences (GEs) COUP-TFI immunoreactivity demarcated the proliferative zones of caudal GE (CGE), dorsal medial GE (MGE), MGE/lateral GE (LGE) boundary, and ventral LGE whereas COUP-TFII was limited to ventral CGE and the MGE/LGE boundary. Co-labeling with gamma amino butyric acidergic interneuron markers revealed that COUP-TFI was expressed in subpopulations of either MGE-derived (SOX6+) or CGE-derived (calretinin+/SP8+) interneurons. COUP-TFII was mainly confined to CGE-derived interneurons. Twice as many GAD67+ cortical cells co-labeled for COUP-TFI than for COUP-TFII. A fifth of COUP-TFI cells also co-expressed COUP-TFII, and cells expressing either transcription factor followed posterior or anterio-lateral pathways into the cortex, therefore, a segregation of migration pathways according to COUP-TF expression as proposed in mouse was not observed. In cultures differentiated from isolated human cortical progenitors, many cells expressed either COUP-TF and 30% also co-expressed GABA, however no cells expressed NKX2.1. This suggests interneurons could be generated intracortically from progenitors expressing either COUP-TF.


Assuntos
Fator II de Transcrição COUP/metabolismo , Fator I de Transcrição COUP/metabolismo , Neurônios GABAérgicos/metabolismo , Interneurônios/metabolismo , Telencéfalo/crescimento & desenvolvimento , Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Hipocampo/metabolismo , Humanos , Imuno-Histoquímica/métodos , Neocórtex/crescimento & desenvolvimento , Neocórtex/metabolismo
19.
Brain Struct Funct ; 222(5): 2309-2328, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27905023

RESUMO

The extent of similarities and differences between cortical GABAergic interneuron generation in rodent and primate telencephalon remains contentious. We examined expression of three interneuron precursor transcription factors, alongside other markers, using immunohistochemistry on 8-12 post-conceptional weeks (PCW) human telencephalon sections. NKX2.1, OLIG2, and COUP-TFII expression occupied distinct (although overlapping) neurogenic domains which extended into the cortex and revealed three CGE compartments: lateral, medial, and ventral. NKX2.1 expression was very largely confined to the MGE, medial CGE, and ventral septum confirming that, at this developmental stage, interneuron generation from NKX2.1+ precursors closely resembles the process observed in rodents. OLIG2 immunoreactivity was observed in GABAergic cells of the proliferative zones of the MGE and septum, but not necessarily co-expressed with NKX2.1, and OLIG2 expression was also extensively seen in the LGE, CGE, and cortex. At 8 PCW, OLIG2+ cells were only present in the medial and anterior cortical wall suggesting a migratory pathway for interneuron precursors via the septum into the medial cortex. By 12 PCW, OLIG2+ cells were present throughout the cortex and many were actively dividing but without co-expressing cortical progenitor markers. Dividing COUP-TFII+ progenitor cells were localized to ventral CGE as previously described but were also numerous in adjacent ventral cortex; in both the cases, COUP-TFII was co-expressed with PAX6 in proliferative zones and TBR1 or calretinin in post-mitotic cortical neurons. Thus COUP-TFII+ progenitors gave rise to pyramidal cells, but also interneurons which not only migrated posteriorly into the cortex from ventral CGE but also anteriorly via the LGE.


Assuntos
Fator II de Transcrição COUP/metabolismo , Interneurônios/metabolismo , Fator de Transcrição 2 de Oligodendrócitos/metabolismo , Telencéfalo/metabolismo , Fator Nuclear 1 de Tireoide/metabolismo , Fatores de Transcrição/metabolismo , Calbindina 2/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Imuno-Histoquímica , Neurogênese/fisiologia , Telencéfalo/embriologia
20.
Cereb Cortex ; 27(1): 216-232, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28013231

RESUMO

Neurexins (NRXNs) are presynaptic terminal proteins and candidate neurodevelopmental disorder susceptibility genes; mutations presumably upset synaptic stabilization and function. However, analysis of human cortical tissue samples by RNAseq and quantitative real-time PCR at 8-12 postconceptional weeks, prior to extensive synapse formation, showed expression of all three NRXNs as well as several potential binding partners. However, the levels of expression were not identical; NRXN1 increased with age and NRXN2 levels were consistently higher than for NRXN3. Immunohistochemistry for each NRXN also revealed different expression patterns at this stage of development. NRXN1 and NRXN3 immunoreactivity was generally strongest in the cortical plate and increased in the ventricular zone with age, but was weak in the synaptogenic presubplate (pSP) and marginal zone. On the other hand, NRXN2 colocalized with synaptophysin in neurites of the pSP, but especially with GAP43 and CASK in growing axons of the intermediate zone. Alternative splicing modifies the role of NRXNs and we found evidence by RNAseq for exon skipping at splice site 4 and concomitant expression of KHDBRS proteins which control this splicing. NRXN2 may play a part in early cortical synaptogenesis, but NRXNs could have diverse roles in development including axon guidance, and intercellular communication between proliferating cells and/or migrating neurons.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Córtex Cerebral/embriologia , Córtex Cerebral/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Neurogênese/fisiologia , Envelhecimento/metabolismo , Proteínas de Ligação ao Cálcio , Desenvolvimento Embrionário/fisiologia , Feminino , Humanos , Lactente , Masculino , Moléculas de Adesão de Célula Nervosa , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...